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Angle measurement is widely used in enterprises of me-
chanical engineering and the optical industry to measure 
the deviations from the straightness guide, deviation 
from planarity faceplate and surface plate, configuration 
tools and machines, the analysis of vibration and temper-
ature changes, as well as measuring the angles of optical 
wedges. Optoelectronic systems allow non-contact, 
quickly and with high precision solve the given tasks[1-3]. 
The photoelectric autocollimator is an important meas-
uring instrument for small-angle measurement based on 
the principal of optical autocollimating, which is widely 
used in the fields of industrial production, national de-
fense technology and scientific research[4-7]. However, 
the small measurement range of the autocollimators 
greatly restricts the applications and developments of 
autocollimators in the field of industrial measurement. 

For the large measurement range requirement of the 
autocollimator, the methods to expand the measurement 
range has gradually become the research focus in recent 
years[8-14]. To extending the measurement range of the 
autocollimator, the authors have proposed a type of laser 
autocollimator by utilizing a multi-cell photodiode (PD) 

array, and the measurement range of the laser autocolli-
mator has been improved to be larger than 2 000″[10]. 
However, a specified cell width and an extremely small 
cell gap are needed for the PD array, which cannot be 
satisfied by a commercially available product. In 2014, K 
Ishikawa et al[11] proposed a new method of measuring 
large aspherical optical surfaces using a rotating accura-
cy autocollimator, and the measuring range is 4 500″. A 
6N+2 dimension optimization (where N is the number of 
scan lines taken across the mirror) was proposed to ex-
tend the angular measurement range of the autocollima-
tor[12]. However, this system is susceptible to the effects 
of the numerical noise, which would decrease the meas-
uring accuracy. In 2016, Chen et al[13] has developed a 
laser autocollimator with a measurement range of 
11 000″ by utilizing a mode-locked laser and a diffrac-
tion grating as the light source and the reflector, respec-
tively. In the second year, with the optical frequency do-
main angle measurement method, the measurement range 
has been increased to 21 600″[14], which is a significant 
extension from a conventional laser autocollimator. Nev-
ertheless, due to the limitation of beam expansion and 
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the caliber for lens, the system cannot be used to measure 
a larger tilt angle, and the complex structure of this sys-
tem would increase the cost. 

In this paper, a large dynamic range, high precision 
two-dimensional (2D) photoelectric autocollimator based 
on quadrangular pyramid is proposed and demonstrated, 
and the algorithms of which are also deduced. For further 
increasing the accuracy, a new image processing algo-
rithm has been proposed, and the corresponding errors 
are also estimated. The research demonstrates that the 
error is less than a pixel, and the error does not exceed 
half a pixel when the distance between the marks more 
than two radii. Also, worth noting is the possibility of the 
algorithm to work with any number of marks and high 
noise immunity. The angle measurement experiments 
have been carried out to demonstrate the feasibility of the 
proposed method, and the experimental results have ver-
ified that the measurement range of the proposed quad-
rangular pyramid photoelectric autocollimator can be 
increased 2  times than that of the flat mirror photoe-
lectric autocollimator, the accuracy is better than 1″ 
when the deflection is less than 20′. 

The traditional 2D optical-electronic autocollimation 
system includes autocollimator mounted on the fixed, 
and a flat mirror is used as a reflector placed on inspect-
ed object, which is shown in Fig.1. Autocollimator con-
sists of emitting optic-electronics channel and a receiver 
with a microprocessor. Emitting channel generates an 
optical beam that falls on the reflector. Optical electronic 
receiver meant for registration of optical radiation from 
the control element and measuring its parameters, which 
determine rotation angles of the object. When turning 
mirrors on the angles Θ1 as tilt and Θ2 as yaw relative to 
the collimation axes, the reflected beam is coming back 
in the autocollimator lens with deflection to the full angle 

2 2
1 22    from the optical axis of the lens. As a re-

sult, the image shifts on the matrix photo-receiver of the 
autocollimator. The microprocessor calculates video 
frames from the matrix photo-receiver and determines 
the shift of the image. However, the measurement range 
of the autocollimator cannot be expanded significantly 
with a flat mirror. One of the reasons is significant dis-
placement of the reflected beam in the plane of the aper-
ture of the lens in the presence of both angles of rotation 
relative to the two collimation axes. 
 

 

Fig.1 The structure of the traditional autocollimator 

In this paper, a glass quadrangular pyramid is pro-
posed to replace the flat mirror as the reflector of the 
autocollimator to expand the measurement range, which 
is shown in Fig.2(a). Each pair of opposite faces of the 
quadrangular pyramid is equivalent to the right-angle 
prism Porro[15]. Therefore, the parallel beam incident on 
the refractive face at the reflection, is divided into two 
beams, each of which is formed a corresponding equiva-
lent right-angle prism Porro. By rotating the pyramid 
relative to one axis on tilt Θ1 or yaw Θ2, each reflected 
beam will move only along this axis in the plane of the 
aperture of the objective while the other coordinates of 
its position will not change. As a result, at the 
two-coordinate measuring the angle of deflection of the 
working beam from the optical axis is also equal to 2Θ1 
(or 2Θ2). 

 

(a) 

 

(b) 

Fig.2 (a) The quadrangular pyramidal reflector; (b) 
The spots on the plane of the aperture of objective, 
where 1,2 are the pyramidal reflectors, 3 is the mirror 
reflector, and 4 is the aperture of objective 

 

By rotating the conventional mirror reflector on tilt Θ1 
and yaw Θ2, the reflected beam moves along two axes. 
As a result, at the two-coordinate measuring the angle of 
deflection of the working beam from the optical axis is 

equal to 2 2
1 22   . 

The valid shifts l1, l2, lm of the reflected beam spots in 
the plane of the aperture the objective for small angles of 
rotation can be calculated by 

l1=2Θ1ꞏL, 2 2
1 22ml L    ,               (1) 

where L is the distance to reflector. 
Therefore, the required diameter of the lens for re-

ceiving both of these beams is 2  times smaller, than 
that for the flat mirror reflected beam (with equal meas-
urement ranges of angles Θ1 and Θ2), as shown in 
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Fig.2(b). This allows us to increase 2  times the 
measurement range of the 2D autocollimator by simple 
replacement of the reflecting control element and use of 
software to implement the requisite image processing 
algorithm. 

Unit vector В of the reflected beam after the reflector 
has been moved is calculated by[16] 

В=MrꞏMdꞏMr
-1A,                          (2)　  

where А is the unit vector of the beam incident on the 

reflector, Md is reflection matrix associated with the re-

flector in the coordinate system X1Y1Z1
[17], Mr and Mr

-1 

are matrices of forward and reverse operators determin-

ing the direct and inverse transitions between the XYZ 

coordinate systems and X1Y1Z1. Form of the matrix Mr is 

defined by the formula from Ref.[18] under replacing 

Θ1=v, Θ2=ψ, Θ3=0. 
The action of the selected reflector is equivalent to the 

action of the two right-angle prisms with the mutually 
perpendicular edges of the dihedral angles between the 
reflecting faces. 

For right-angle prism with the unit vector of edge 

1

0

1

0

 
   
  

P  matrix of action is determined by substituting 

the coordinates of the unit vector of the general form[19]: 

1

1 0 0

0 1 0

0 0 1
d

 
   
  

M .                        (3) 

For right-angle prism with the unit vector 2

1

0

0

 
   
  

P , 

the matrix is equal: 

2

1 0 0

0 1 0

0 0 1
d

 
   
  

M .                        (4) 

When turning the object, with which is associated a 
reflector, on the angles Θ1, Θ2, the coordinates of the unit 
vectors В1,2 of two reflected beams along the axes OX, 
OY are determined from expressions: 

Вx1=0, Вy1=−sin(2Θ1),                       (5) 

Вx2=sin(2Θ2)ꞏcos(Θ1), Вy2=sin(2Θ1)ꞏsin2(Θ2).      (6) 

Here the number in the index identifies the number of 
the reflected beam, the upper line and the sign in the 
structure part of formulas corresponds to the unit vector 
of the first beam. 

Two reflected beams are formed in the photodetector 
plane of the receiving channels of the marked autocolli-
mator images 1 and 2. These images are shifted at the 
values y1 and x2, y2 on the axes OX and OY (Fig.3): 

y1=fꞏtgβ1, x2=fꞏtgα2, y2=fꞏtgβ2,                 (7) 

where f is the focal length of the autocollimator lens, β1, 

α2 and β2 are the angles between the projections of the 
unit vectors В1,2 in the coordinate planes YOZ, XOZ and 
the optical axis of the lens, respectively. 
 

 
Fig.3 The image on the photodetector matrix, 1, 2: 
before the rotation of the reflector; 1′, 2′: after the 
rotation; 3: hypothetic position for the mirror reflector 

The angles α and β are actually longitude and latitude 
of the unit vector of the reflected beam in a polar coor-
dinate system (the OZ axis parallel to the optical axis is a 
polar axis). The coordinates of the unit vectors of the 
reflected beams in the XYZ coordinate system associated 
with the longitude and latitude through the known rela-
tions: 

Вy1=sinβ1, Вx2=sinα2ꞏcosβ2, Вy2=sinβ2.          (8) 

Eqs.(5)—(8) define a system of three nonlinear equa-
tions formed through equating of their right sides. This 
system comprises equations corresponding to the unit 
vectors of the two beams.  

Use of this algorithm requires a microprocessor to be 
included in the autocollimator unit. For small measured 
angles, an approximate algorithm can be used as follows: 

Вy1=β1=−2Θ1, Вx2=α2=2Θ2,                   (9) 

Θ1=−y1/(2f), Θ2=x2/(2f).                     (10) 

In this case, the image-processing algorithm can be 
implemented with a simple electronic processing unit 
based on logical microcircuits of medium-scale integra-
tion level. 

The foremost stage of the calculation of the angles Θ1 
and Θ2 is to determine the center of the marks registered 
by the system. Using the control elements different from 
flat mirror creates a situation when in the image plane will 
mark overlap with each other. In this connection, the 
question arises what should be the distance between the 
centers of the marks in order to save serviceability and 
accuracy of the measurement system. 

To study the possible solution of this problem has been 
developed and implemented a model for the processing of 
overlapping arrays of irradiance in technology MatLab, 
and the model parameters are shown in Tab.1. This model 
has allowed to investigate the influence marks overlap-
ping on the measuring accuracy of the coordinates. 

In general, the idea of the algorithm consists in pre-
liminary find the most probable centers of marks and their 
subsequent a clarification by the weighted summation 
method. To minimize the effect marks overlapping de-
cided to use one of the key features of the control element,
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namely the fact that each mark can move only along one 
axis. 

Tab.1 The model parameters 

Parameter Value 

The size of the matrix 128 pixel×128 pixel

The radius of the mark 12 pixels 

Signal-to-noise ratio 17 

The law of distribution of noise Normal 

 
The previous stage of the algorithm is to prepare the 

image to be processed. At this action, the image pro-
cessing by the circular averaging filter with a window size 
equal to the diameter of a circle plus one pixel. Then apply 
a threshold filtering that allows to cut noise. After filtering 
threshold is necessary to apply a Gaussian filter as the 
image becomes unusable for processing by a weighted 
summation method[20,21]. 

To solve the overlapping problem, a priori known in-
formation about the geometric form of the mark is used. In 
this system, the mark has a circular shape, which makes it 
stable to noise and invariant to rotation, scale, etc. A circle 
can be described by an equation with three parameters (x, 
y, R), where r is the radius of the circle. Thus, the primary 
task is to detect geometric primitives corresponding to a 
given combination of parameters. 

For these purposes, it developed an algorithm based on 
the Hough transform[20,21]. It allowed a high speed and 
accurately determine the coordinates of the marks, to 
measure them, and maintain the mark in the course of 
their movement, even in the case of their intersection. It 
should be noted that in the case of a complete intersec-
tion, when more than 60% of the surfaces coincide, the 
support becomes impossible. However, now our team is 
working to improve the algorithm in order to solve this 
problem. 

Hough transform is perfect for this since it is able to 
work with geometric primitives, noise immunity, and the 
equation of a circle. 

(x2+y2)=R2.                                       (11) 
Allows determining the coordinates of the center i.e. x 

and y after detection. Using the equation of a circle in 
Cartesian coordinates will create a three-dimensional 
space of the accumulation, in which calculations will be 
performed. Thus, in the first stage of the algorithm the 
simulated frame is transformed to grayscale view, as 
shown in Fig.4.  

This is necessary for the correct operation of the algo-
rithm. When conversion was done, the algorithm needs to 
know the range of possible values for the radius of the 
mark, as well as the value of the threshold filter for further 
processing. These values can be pre-recorded in the al-
gorithm when configured for each new situation. To study 
the algorithm, these parameters were selected once and 
used consistently in all experiments. 

 
Fig.4 Simulation results after the grayscale image 
transformation (the colors are inverted) 

In the second stage, the algorithm calculates the gra-
dient value in each direction and then calculates the gra-
dient magnitude from formula: 

2 2 ( ) ( )x yimg img img     ,             (12) 

where img  is gradient magnitude, ximg  and yimg  

are gradient horizontally and vertically, respectively. 
The points that will be used for voting, for the subse-

quent determination of the center of the circle are detected 
in the received array. For this purpose, the value is com-
pared with the threshold value (specified together with the 
range of radii). The pixel background is excluded from the 
voice due to this. The result of the step is shown by Fig.5. 

 
Fig.5 The result of estimating the value of the gradient 
vector (the colors are inverted) 

At the third stage, the accumulation array is formed. 
The dimension of this array always coincides with the 
number of variables that define the geometric primitive. 
Already at this stage, it is possible to select the boundaries 
of marks. Fig.6 shows the accumulation array, where the 
horizontal and vertical axes represent the pixel coordi-
nates of the photodetector, and the unit is arbitrary.   
 

 

Fig.6 3D view of accumulation array
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For the coordinates of the mark centers calculations, it 
is necessary to calculate the local maxima in the space of 
the accumulation array (Stage 4). 

For this purpose, the array is divided into parts. The 
minimum part size can be one-quarter of the short side of 
the matrix or 1.5 the maximum possible radius of the mark. 
Between these values, the minimum is chosen and is 
assigned as the size of the “area of interest”. 

After the zones of interest were selected, each of them 
is analyzed for the presence of identical near-standing 
pixels (not less than 8) with a value above the specified 
level. Each such group of pixels is assigned its own index. 
For each such group, there is a local maximum. Fig.7 
shows the filtered accumulation array, where the hori-
zontal and vertical axes represent the pixel coordinates of 
the photodetector, and the unit is arbitrary. 

 

 

Fig.7 Accumulation array after local maximum filter-
ing 
 

Among the candidates that have been formed, group by 
contiguity was formed, and the center of gravity for each 
group is calculated. Obviously, the middle positioned 
maximum is the result of the adding of the overlapped 
intensities. In this case it isn’t analyzed in Final stage. 
Two another centers will be the centers of the circles i.e. 
marks images. These coordinates are superimposed on the 
original image and display the detected circles and their 
centers in the output simulated frame. The result of the 
program is shown in Fig.8, which is to display the result in 
the image plane with an indication of the measured cen-
ters of coordinates and the distance between the centers. 

These stages were made by using Digital Image Pro-
cessing Toolbox in Matlab[22]. 

In the process of algorithm research, the model was 
used to evaluate the error, and a two-step simulation was 
carried out: 

Step 1: The distance between the image centers is set as 
L, changing the step size from 0.5R to 1.9R with a step 
length of 0.1R (where R is the radius of the marked im-
age). In this process, the phenomenon of overlapping 
marks imagines is involved. To ensure the accuracy of 
the image center coordinates, a processing algorithm 
based on the Hough transform is adopted, which has 
been discussed above). Comparing the measured image 

coordinates (x, y) with the original accurate values, and 
the simulation result is shown in Fig.9 (the black and red 
lines). 

 

pixel

pi
xe

l

 

Fig.8 Indication of the measured centers of coordi-
nates and the distance between the centers of the 
images 
 

Step 2: The distance between the image centers is set as 
L, changing the step size from 2R to 6R with a step length 
of 0.1R. There are no overlapping marks imagines in this 
process, so we use the weighted summation method to 
measure the center coordinates of the marked image[21], 
and the simulation result is shown in Fig.9 (the blue and 
purple lines). 

 

 

Fig.9 Measurement errors for overlapping marks and 
for nonoverlapping marks 

 
Fig.9 shows the relationship between the measurement 

error of the image coordinate and the center distance of 
the marked image. The red line and blue line represent 
the measurement errors of the images moving along 
X-axis and Y-axis, respectively. 

It can be seen from the simulation results, the supposed 
algorithm is unusable when the distance between the 
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centers of marks less than half the radius of the marks 
due to large measuring error. As the center distance of 
the marked image increases from 0.5R to 2R, the meas-
urement error decreases gradually. For L=2R,…,6R, this 
value is equal to the average error of unoverlapping mark 
images. Therefore, the proposed collimator cannot be 
used within the radius r=0.5R of the image overlap area. 
Such as, when the radius of the receiver (CMOS) of the 
autocollimator is R′=12 pixel, and the size of each pixel 
is p=2.2 μm, the focal length of the objective lens is 
f=250 mm, the angle range that cannot be measured by 
the proposed autocollimator is: 

err

2 2 0.5
 

2 2

p r p R

f f
     

  .                 (13) 

According to Eq.(13), Θerr=11″, which is a small value 
compared with the measuring range of the autocollimator 
(15′). 

Apart from, the analysis of the data determined that 
positioning accuracy is dependent only on the distance 
between the centers of the marks and the degree of the 
image overlapping. Parameters, such as the size of the 
matrix, the size of marks and other factors on the accuracy 
of coordinate measurement are not affected. 

A prototype of the autocollimator based on the quad-
rangular pyramid was constructed and experiments were 
carried out to demonstrate the feasibility of the proposed 
method. The objective-lens focal length of the photoe-
lectric autocollimator is 250 mm, the caliber and circle of 
confusion of which are 65 mm and 0.02 mm, respectively. 
The semiconductor diode “SFH 485P” with 10 mW 
power and 0.2 mm diaphragm diameter is employed as 
light source. The CMOS matrix “OV05620 CMOS 
QSXGA” with 2592×1944 resolution, 
5.808 mm×4.294 mm sensitive area and 2.2 μm×2.2 μm 
pixel size is employed as the photoelectric sensor of the 
autocollimator. The 2D measurement range and meas-
urement error of the autocollimator are 10′ and 1′′, re-
spectively, in case of conventional mirror reflector. The 
aperture diameter of the quadrangular pyramid is 50 mm. 
The experimental setup is shown in Fig.10. The quad-
rangular pyramid is mounted on the rotary stage. The 
distance from autocollimator to pyramid reflector is 
900 mm. The calibrating mirror and calibrating autocol-
limator Triangle “Trioptics GMBH, Germany” are used to 
calibrate the angle measurements. The measurement 
range and accuracy of the calibrating autocollimator are 
20′ and 1′′, respectively.  

The measurement experiment was conducted as fol-
lows:  

Step 1: Firstly, the quadrangular pyramid was hori-
zontally rotated for 15′ (Θ1) by the calibrating autocolli-
mator and rotation stage as the baseline of the measure-
ment experiment. Secondly, the quadrangular pyramid 
was vertically rotated twenty times (Θ2=i, i=1, 2, …, 21) 
in a step of 1′. Then the displacement of facula 2 in Fig.3 
was measured by the calibrating autocollimator, corre-

sponding to the displacement of the image spot after each 
rotation of the quadrangular pyramid.  

 

Quadrangular 
pyramid

Autocollimator
Calibrating

autocollimator

Turntable
Calibrating 

mirror

 

Fig.10 Photograph of the experimental setup 
 
Step 2: The CMOS array of the autocollimator will 

take 10 frames, following by employing a weighted al-
gorithm to determinstage 2 in Fig.3 was obtained. Finally, 
2 can be obtained according to Eq.(10), as depicted in 
Fig.9.  

Step 3: Firstly, the quadrangular pyramid was hori-
zontally rotated for 15′ (2) by the calibrating autocolli-
mator and rotation stage as the baseline of the measure-
ment experiment. Secondly, the quadrangular pyramid 
was vertically rotated twenty times (1=i, i=1, 2, ...., 21) 
in a step of 1′. Then the displacement of facula 1 in Fig.3 
was measured by the calibrating autocollimator, corre-
sponding to the displacement of the image spot after each 
rotation of the quadrangular pyramid.  

Step 4: The CMOS array of the autocollimator will 
take 10 frames, following by employing a weighted al-
gorithm to determine the central coordinates of the irra-
diance distribution of the image. By taking the mean of 
the central coordinate, the displacement of facula 1 in 
Fig.3 was obtained. Finally, 1 can be obtained according 
to Eq.(10), as depicted in Fig.11.  
 

 
Fig.11 The measurements of the rotation angles Θ1 
and Θ2, where the dash line depicts the linear fitting 
results of the measurement results 

 
The results of Step 2 and Step 4 are shown in Fig.9. 
According to the experimental results, the deviation 

between the measurement results of the rotation angle 
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and the linear fitting is derived random error of the au-
tocollimator and the random error in the measurement 
range of 15′ was shown in Fig.12. 

 

 

Fig.12 Random error of rotation angles Θ1 and Θ2 in a 
measurement range of 15′ 

 
It can be seen from Fig.10 that the root-mean-squares 

(ΔΘ1  and ΔΘ2) of the random error are 1.04″ and 1.4″, 
respectively. The estimation of the random error agrees 
well with the theoretical calculations. The measurement 
range of the autocollimator was improved from 10′ to 15′ 
by substituting the plane mirror with the proposed quad-
rangular pyramid. 

In this paper, a photoelectric autocollimator based on 
the quadrangular pyramid is proposed to expanding the 
measurement range, and the corresponding algorithms 
are also deduced. To increasing the accuracy, a new im-
age processing algorithm has been proposed, and the 
corresponding errors are also estimated. The research 
demonstrates that the error is less than a pixel, and the 
error does not exceed half a pixel when the distance be-
tween the marks more than two radii. Also, worth noting 
is the possibility of the algorithm to work with any num-
ber of marks and high noise immunity. The angle meas-
urement experiments have been carried out to demon-
strate the feasibility of the proposed method, and the 
experimental results have verified that the measurement 
range of the proposed quadrangular pyramid photoelec-
tric autocollimator can be increased 2  times than that 
of the flat mirror photoelectric autocollimator from 10′ to 
15′ arc minutes. The accuracy is better than 1″ when the 
deflection is less than 15′. 
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